Home
Class 12
MATHS
lim(x rarr0)(sin^(2)x)/(x)=...

`lim_(x rarr0)(sin^(2)x)/(x)= `

A

`0`

B

`1`

C

`2`

D

`-1`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(sin x^(@))/(x)

lim_(x rarr0)(sin(x/4))/(x)

If f(x) be a cubic polynomial and lim_(x rarr0)(sin^(2)x)/(f(x))=(1)/(3) then f(1) can not be equal to :

lim_(x rarr0)(sin x)^(x)

lim_(x rarr0)(sin(x^(2)-x))/(x)

lim_(x rarr0)(sin(x^(o)))/(x)

lim_(x rarr0)(sin x)/(x+5)

lim_(x rarr0)(sin[x])/([x])

lim_(x rarr0)(sin[x])/([x])

lim_(x rarr0)(sin x)/(x)=1