Home
Class 11
MATHS
The values of x satisfying the equation ...

The values of x satisfying the equation `(31+8sqrt(15))^(x^(2)-3)+1=(32+8sqrt(15))^(x^(2)-3)` is/are (A) 3 (B) 0 (C) 2 (D) -2

Promotional Banner

Similar Questions

Explore conceptually related problems

The values of x satisfying the equation (31+8sqrt(15))^(x^(2)-3)+1=(32+8sqrt(15) (A) 3 (B) 0 (C) 2 (D) -2

The sum of values of x satisfying the equation (31+8sqrt(15))^(x^(2)-3)+1=(32+8sqrt(15))^(x^(2)-3) is 3 b.0 c.2 d.none of these

The value of x satisfying the equation |sinx cosx|+sqrt(2+tan^(2)x+cot^(2)x)=sqrt3

Number of values of x, satisfying the equation (sqrt(3)+1)^(2)x+(sqrt(3)-1)^(2)x=2^(3)x, is equal to

The maximum value of x that satisfies the equation sin^(-1)((2sqrt(15))/(|x|))=cos^(-1)((14)/(|x|)) is

Find the integral value of x satisfying the equation |log_(sqrt(3))x-2|-|log_(3)x-2|=2

The number of values of x satisfying the equation log_(2)(log_(3)(log_(2)x)))>=sqrt(8-x)+sqrt(x-8) is :

The value of x in (0,(pi)/(2)) satisfying the equation,(sqrt(3)-1)/(sin x)+(sqrt(3)+1)/(cos x)=4sqrt(2) is

THe value of x which satisfy the equation (sqrt(5x^(2)-8x+3))-sqrt((5x^(2)-9x+4))=sqrt((2x^(2)-2x))-sqrt((2x^(2)-3x+1))

Number of value(s) of 'x' which satisfy the equation log_(3+x^(2))(15+sqrt(x))=log_(5+x^(2))((1)/(2+sqrt(x))) is/are-