Home
Class 11
MATHS
(i^(95)+i^(67))=...

` (i^(95)+i^(67))`=

Promotional Banner

Similar Questions

Explore conceptually related problems

Let z=(sqrt3/2)-(i/2) then the smallest positive integer n such that (z^(95)+i^(67))^(94)=z^n is

Let z=(sqrt3/2)-(i/2) then the smallest positive integer n such that (z^(95)+i^(67))^(94)=z^n is

Let z=(sqrt(3)/2)-(i/2) Then the smallest positive integer n such that (z^(95)+i^(67))^(94)=z^(n) is

"Let "z=(sqrt(3)/2)-(i/2)" Then the smallest positive integer n such that "(z^(95)+i^(67))^(94)=z^(n)" is (A)12 (B)10 (C)9 (D) 2"

i^(53) + i^(72) + i^(93) + i^(102) = 2i .

Prove that: (i) 1+i^(2)+i^(4)+i^(6)=0 (ii) 1+i^(10)+i^(100)+i^(1000)=2 (iii) i^(104)+i^(109)+i^(114)+i^(119)=0 (iv) 6i^(54)+5i^(37)-2i^(11)+6i^(68)=7i (v) (i^(592)+i^(590)+i^(588)+i^(586)+i^(584))/(i^(582)+i^(580)+i^(578)+i^(576)+i^(574))=-1

(i^(365)+i^(246)+i^(95)+i^(35))/(i^(355)+i^(236)+i^(85)+i^(25))-1

Evaluate the following : (i) i^(7) (ii) i^(51) (iii) (1)/(i) (iv) i^(-71) (v) (i^(37)+(1)/(i^(67)))

Evaluate ((i^(180)+i^(178)+i^(176)+i^(174)+i^(172))/(i^(170)+i^(168)+i^(166)+i^(164)+i^(162))) .