Home
Class 11
MATHS
if (x^(2)-x)/(1-ax) attains all real val...

if `(x^(2)-x)/(1-ax)` attains all real values `(x in R)` then possible value of `a` are

Promotional Banner

Similar Questions

Explore conceptually related problems

If (x^(2)+ax+3)/(x^(2)+x+a) , takes all real values for possible real values of x, then

If (x^(2)+ax+3)/(x^(2)+x+a) takes all real values for possible real values of x, then a.4a^(2)+39 0 c.a>=(1)/(4) d.a<(1)/(4)

if cuadratic equation x^(2)+2(a+2b)x+(2a+b-1)=0 has unequal real roots for all b in R then the possible values of a can be equal to

Let a and b be real numbers such that the function g(x)={{:(,-3ax^(2)-2,x lt 1),(,bx+a^(2),x ge1):} is differentiable for all x in R Then the possible value(s) of a is (are)

Let p and q be real numbers such that the function f(x)={{:(p^(2)+qx","xge1),(-5px^(2)-6","xlt1):} is derivable for all x in R . Then sum of all possible values of p is

If the roots of the equation x^(2)-8x+a^(2)-6a=0 are real distinct,then find all possible value of a .

If ax^(2)+bx+4 attains its minimum value -1 at x = 1, then the values of a and b are respectively