Home
Class 11
MATHS
[lim(x rarr oo)(1.2+2.3+3.4+.....+n(n+1)...

[lim_(x rarr oo)(1.2+2.3+3.4+.....+n(n+1))/(n^(3))],[" is equal to "]

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo) (1.2 +2.3+3.4+ .....+n(n+1))/n^(3)=

lim_ (n rarr oo) (1.2 + 2.3 + 3.4 + .... + n (n + 1)) / (n ^ (3))

lim_(n rarr oo)(1^(2)+2^(2)+3^(2)+.........+n^(2))/(n^(3)) is equal to -

lim_ (n rarr oo) (1 + 2 + 3 + ...... + n) / (n ^ (2))

lim_(n->oo) (1.2+2.3+3.4+....+n(n+1))/n^3

The value of Lim_(x to oo)(1.2+2.3+3.4+....+n.(n+1))/(n^(3))= is

lim_(n rarr oo) (1+2+3+…...+n)/(n^(2)), n in N is equal to :

The value of [lim_(n to oo)(1+2^(4)+3^(4)+...+n^(4))/(n^(5))-lim_(n to oo)(1+2^(3)+3^(3)+...+n^(3))/(n^(5))] is equal to -

lim_ (n rarr oo) (1 + 2 + 3 * -n) / (n ^ (2))

lim_ (n rarr oo) ((n-1) (n-2) (n-3)) / (n ^ (3))