Home
Class 11
MATHS
y=sin^(-1)((x)/(sqrt(a^(2)+x^(2))))...

y=sin^(-1)((x)/(sqrt(a^(2)+x^(2))))

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sin ^(-1)((x)/( sqrt(x^(2) +a^(2)))) ,then (dy)/(dx)=

y=sin^(-1)((x)/(sqrt(1+x^(2))))+cos^(-1)((1)/(sqrt(1+x^(2))))

If y=sin^(-1)((2sqrt(x^(2)-1))/(x^(2))) , then find (dy)/(dx) .

Prove that: tan^(-1)((1-x)/(1+x))-tan^(-1)((1-y)/(1+y))=sin^(-1)((y-x)/(sqrt((1+x^(2))(1+y^(2)))))

tan ^(-1)x-tan ^(-1)y=sin ^(-1) ""(x-y)/(sqrt((1+x^(2))(1+y^(2)))

tan ^(-1)""(1-x)/(1+x)- tan ^(-1 )""(1-y)/(1+y) = sin ^(-1) ""(y-x)/(sqrt((1+x^(2))(1+y^(2)))

If y=(sin^(-1)x)/(sqrt(1-x^(2))), then ((1-x^(2))dy)/(dx) is equal to x+y (b) 1+xy1-xy(d)xy-2

If y=(x sin^(-1)x)/(sqrt(1-x^(2)))+log sqrt(1-x^(2)), then prove that (dy)/(dx)=(sin^(-1)x)/((1-x^(2))^((3)/(2)))

Prove that tan^(-1)((1-x)/(1+x))-tan^(-1)((1-y)/(1+y))=sin^(-1)((y-x)/(sqrt(1+x^(2))*sqrt(1+y^(2))))

Prove the following "tan"^(-1)((1-x)/(1+x))-"tan"^(-1)((1-y)/(1+y))="sin"^(-1)((y-x)/(sqrt(1+x^(2))sqrt(1+y^(2)))) .