Home
Class 12
MATHS
lim(x rarr oo)(1.2+2.3+3.4+......+n(n+1)...

lim_(x rarr oo)(1.2+2.3+3.4+......+n(n+1))/(n^(3))

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo) (1.2 +2.3+3.4+ .....+n(n+1))/n^(3)=

The value of Lim_(x to oo)(1.2+2.3+3.4+....+n.(n+1))/(n^(3))= is

lim_ (n rarr oo) (1.2 + 2.3 + 3.4 + .... + n (n + 1)) / (n ^ (3))

lim_ (n rarr oo) (1 + 2 + 3 + ...... + n) / (n ^ (2))

Let a = lim_(n rarr oo) (1+2+3+.....+n)/(n^(2))= , b = lim_(n rarr oo) (1^(2)+2^(2)+.....+n^(2))/(n^(3))= then

lim_ (n rarr oo) (1 + 2 + 3 + ...... + n) / (3n ^ (2)) =?

Evaluate: lim_(n rarr oo) (n^(2)(1+2+3+4+......+n))/(n^(4)+4n^(2)) .

lim_(n rarr oo) (1^(2)+2^(2)+....+n^(2))/(2n^(3)+3n^(2)+4n+1 ) =

lim_(n->oo) (1.2+2.3+3.4+....+n(n+1))/n^3

lim_(n rarr oo)(1+2^(4)+3^(4)+...+n^(4))/(n^(5))