Home
Class 12
MATHS
" The value of "C(0)+(C(1))/(2)+(C(2))/(...

" The value of "C_(0)+(C_(1))/(2)+(C_(2))/(3)+...+(C_(n))/(n+1)" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

If C_(0), C_(1), C_(2),..., C_(n) are binomial coefficients in the expansion of (1 + x)^(n), then the value of C_(0) + (C_(1))/(2) + (C_(2))/(3) + (C_(3))/(4) +...+ (C_(n))/(n+1) is

If C_(0), C_(1), C_(2),..., C_(n) are binomial coefficients in the expansion of (1 + x)^(n), then the value of C_(0) - (C_(1))/(2) + (C_(2))/(3) - (C_(3))/(4) +...+ (-1)^(n) (C_(n))/(n+1) is

C_(0)-(C_(1))/(2)+(C_(2))/(3)-......+(-1)^(n)(C_(n))/(n+1)=(1)/(n+1)

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - (C_(1))/(2) + (C_(2))/(3) -…+ (-1)^(n) (C_(n))/(n+1) = (1)/(n+1) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - (C_(1))/(2) + (C_(2))/(3) -…+ (-1)^(n) (C_(n))/(n+1) = (1)/(n+1) .

(C_(0))/(1)-(C_(1))/(2)+(C_(2))/(3)+.. . .+((-1)^(n))/(n+1). C_(n) =

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+...+C_(n)x^(n) then the value of (C_(0))^(2)+((C_(1))^(2))/(2)+((C_(2))^(2))/(3)+...+((C_(n))^(2))/(n+1) is equal to

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+.....+C_(n)x^(n) then show : (C_(0))/(1)+(C_(1))/(2)+(C_(2))/(3)+......+(C_(n))/(n+1)=(2^(n+1)-1)/(n+1)

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + ... + C_(n) x^(n) , then value of C_(0)^(2) + 2C_(1)^(2) + 3C_(2)^(2) + ... + (n + 1) C^(2)n is