Home
Class 12
MATHS
x((dy)/(dx))=y(log y-log x+1)...

x((dy)/(dx))=y(log y-log x+1)

Promotional Banner

Similar Questions

Explore conceptually related problems

If x(dy)/(dx)=y(log_(e)y-log_(e)x+1) ,then solution of the equation is

IF y = y (x) is the solution of the differential equation, x (dy)/(dx) = y (log_(e) y - log_(e) x + 1) , when y(1) = 2, then y(2) is equal to _______

If y log x=x-y prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If y=x^(y^(x)) , prove that, (dy)/(dx)=(y log y(1+x logx log y))/(x logx(1-x logy)) .

Find (dy)/( dx) , if y=log( log x)

If x^(y)=e^(x-y), then show that (dy)/(dx)=(log x)/((1+log x)^(2))

x^(y)=e^(x-y) so,prove that (dy)/(dx)=(log x)/((1+log x)^(2))

"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).

If x^(y)=e^(x-y), Prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y)=e^(x-y), prove that (dy)/(dx)=(log x)/((1+log x)^(2))