Home
Class 12
MATHS
int(2x-1)/(2x+3)dx=x-log(2x+3)^(2)+c...

int(2x-1)/(2x+3)dx=x-log(2x+3)^(2)+c

Promotional Banner

Similar Questions

Explore conceptually related problems

verify that int(2x-1)/(2x+3)dx = x - log|(2x+3)^(2)|+C

verify that int(2x-1)/(2x+3)dx = x - log|(2x+3)^(2)|+C

Verify that int(2x+3)/(x^(2)+3x)dx = log|x^(2)+3x|+c

Verify that int(2x+3)/(x^(2)+3x)dx = log|x^(2)+3x|+c

int (1)/(x ^(3)) [log x ^(x) ] ^(2) dx = p (log x ) ^(3) + c Then p = .............

Verify that int (2x+3)/(x^2+3x)dx=log|x^2+3x|+C .

int(2x-1)/((x-1)(x+2)(x-3))dx=Alog|x-1|+B log|x+2|+C log|x-3|+K Then A,B,C are respectively.

int(x-1)/((x-3)(x-2))dx=A ln(x-3)+B ln(x-2)+c , then find the value of A+B

If int(5x+2)/(x^(2)-3x+2)dx=log[(x-2)^(m).(x-1)^(n)]+c then (m,n)-=