Home
Class 12
MATHS
(x^4+24 x^2+28)/((x^2+1)^3)=...

`(x^4+24 x^2+28)/((x^2+1)^3)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Resolve (x^(4)+24x^(2)+28)/((x^(2)+1)^(3)) into Partial fractions.

Resolve (x^(4)+24x^(2)+28)/((x^(2)+1)^(3)) into partial fractions.

If (x^(4)+24x^(2)+28)/((x^(2)+1)^(3))=A/((x^(2)+1))+B/((x^(2)+1)^(2))+C/((x^(2)+1)^(3)) , then A + C =

If (x^(4)+24x^(2)+28)/((x^(2)+1)^(3))=A/((x^(2)+1))+B/((x^(2)+1)^(2))+C/((x^(2)+1)^(3)) , then A + C =

The sum of all possible solution (s) of the equation |x+2|-3|=sgn(1-|((x-2)(x^(2)+10x+24))/((x^(2)+1)(x+4)(x^(2)+4x-12))|)

Solve: (x^2-2x+24)/(x^2-3x+4)lt=4 .

Solve: (x^(2)-2x+24)/(x^(2)-3x+4)<=4

(a) Find the HCF of 28x^(4) and 70x^(6) . (b) Find the HCF of 48x^(2) (x + 3)^(2) (2x-1)^(3) (x + 1) and 60x^(3) (x+ 3) (2x-1)^(2) (x + 2) .