Home
Class 12
MATHS
If (log|x|+1)/([2log|x|-3][log|x|-2])=al...

If `(log|x|+1)/([2log|x|-3][log|x|-2])=alpha/(2log|x|-3)+beta/(log|x|-2),` then `alpha^2-beta^2=`

Promotional Banner

Similar Questions

Explore conceptually related problems

log(x-1)+log(x-2)lt log(x+2)

"If "int (1)/(sqrt(4x^(2)-5))dx=alpha log|x+sqrt(x^(2)-beta)|,"then "alpha+2beta is

3^(log x)-2^(log x)=2^(log x+1)-3^(log x-1), where base is 10,

log_(2)(log_(3)(log_(2)x))=1 , then the value of x is :

if log_(a)x=(1)/(alpha),log_(b)x=(1)/(beta),log_(c)x=y then log_(abc)x

If the area of the bounded region R= {(x,y): "max" {0, log_(e)x} le y le 2^(x), (1)/(2) le x le 2} is alpha (log_(e)2)^(-1) + beta (log_(e )2) +gamma , then the value of (alpha +beta-2gamma)^(2) is equal to

If log_(2)[log_(3)(log_(2)x)]=1 , then x is equal to

If x = -1 and x = 2 are extreme points of : f(x)=alpha log|x|+beta x^(2)+x , then :

If 9^("log"3("log"_(2) x)) = "log"_(2)x - ("log"_(2)x)^(2) + 1, then x =

If 9^("log"_3("log"_(2) x)) = "log"_(2)x - ("log"_(2)x)^(2) + 1, then x =