Home
Class 12
MATHS
x=(1+t)/(t^(3)),y=(3)/(2t^(2))+(2)/(t)" ...

x=(1+t)/(t^(3)),y=(3)/(2t^(2))+(2)/(t)" हो,तो "x((dy)/(dx))^(3)-(dy)/(dx)

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=(1+t)/(t^(3)),y=(3)/(2t^(2))+(2)/(t) then x((dy)/(dx))^(3)-(dy)/(dx), equals to

If x=(1+t)/(t^(3)),y=(3)/(2t^(2))+(2)/(t), then x((dy)/(dx))^(3)-(dy)/(dx) is equal to a.0 b.-1 c.1 d.2

If x=(1+t)/(t^(3)),y=(3)/(2t^(2))+(2)/(t), then x((dy)/(dx))^(3)-(dy)/(dx) is equal to (a)0(b)-1(c)1(d)

if x=(1+t)/(t^(3)),y=(3)/(2t^(2))+(2)/(t) satisfies f(x)*{(dy)/(dx)}^(3)=1+(dy)/(dx) then f(x) is:

If x=(1+t)/(t^3),y=3/(2t^2)+2/t , then x((dy)/(dx))^3-(dy)/(dx) is equal to (a) 0 (b) -1 (c) 1 (d) 2

A function is reprersented parametrically by the equations x=(1+t)/(t^(3));y=(3)/(2t^(2))+(2)/(t). Then the value of |(dy)/(dx)-x((dy)/(dx))

x=(1-t^(2))/(1+t^(2)), y=(2t)/(1+t^(2)) " then " (dy)/(dx) is

If x=(2t)/(1+t^(2)),y=(1-t^(2))/(1+t^(2))," then "(dy)/(dx)=

if x=(1+t)/t^3 ,y=3/(2t^2)+2/t satisfies f(x)*{(dy)/(dx)}^3=1+(dy)/(dx) then f(x) is:

if x=(1+t)/t^3 ,y=3/(2t^2)+2/t satisfies f(x)*{(dy)/(dx)}^3=1+(dy)/(dx) then f(x) is: