Home
Class 11
MATHS
" Find the relative error in "Z" if "Z=(...

" Find the relative error in "Z" if "Z=(A^(4)B^(1/3))/(CD^(3/2))

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the relative error in x, if x = a^4b^(1//3) // cd^(3//2

Find the relative error in x, if x - a^4 b^(1//3// cd^3//2

If Z=(A^(4)B^(1/3))/(CD^(3/2)) ,than relative error in Z (Delta Z)/(Z) is equal to (a) ((Delta A)/(A))^(4)+((Delta B)/(B))^(1/3)-((Delta C)/(C))-((Delta D)/(D))^(3/2) (b) 4((Delta A)/(A))+((1)/(3))((Delta B)/(B))+((Delta C)/(C))+((3)/(2))((Delta D)/(D)) (c) 4((Delta A)/(A))+(1)/(3)((Delta B)/(B))-((Delta C)/(C))-((3)/(2))((Delta D)/(D)) (d) ((Delta A)/(A))^(4)+(1)/(3)((Delta B)/(B))+((Delta C)/(C))+(3)/(2)((Delta D)/(D))

If z_(1),z_(2),z_(3) are distinct nonzero complex numbers and a,b,c in R^(+) such that (a)/(|z_(1)-z_(2)|)=(b)/(|z_(2)-z_(3)|)=(c)/(|z_(3)-z_(1)|) Then find the value of (a^(2))/(z_(1)-z_(2))+(b^(2))/(z_(2)-z_(3))+(c^(2))/(z_(3)-z_(1))

If z_(1) = 2 - i and z_(2) = -4 + 3i, find the inverse of z_(1)z_(2) and (z_(1))/(z_(2)) .

Given Z = (A^(4)b^(1//3))/(CD^(3//2)) where A,B,C and D are physical quantity. What will be the maximum percentage error in Z.

Given Z = (A^4B^(1//3))/(CD^(3//2)) where A, B, C & D are physical quantity. What will be the maximum -percentage error in Z?

If z_(1) = 2 + 5i, z_(2) = -3 -4i, and z_(3) = 1 + I, find the additive and multiplicative inverse of z_(1),z_(2)and z_(3) .