Home
Class 12
CHEMISTRY
Niobium crystallizes in body-centred cub...

Niobium crystallizes in body-centred cubic structure. If the density is `8.55 g cm^(-3)`, calculate the atomic radius of niobium using its atomic mass `93 u`.

Text Solution

Verified by Experts

The following equations link density (D), number of atoms per unit cell (Z), atomic mass (M), Avogadro's number `(N_0)`, and edge length (a):
`"D"=frac{"ZM"}{"N"_0"a"^3}`
Given `"D"=8.55"g"//"cm"^3` and `"M"=93u.`
Edge length`=a=(frac{"ZM"}{"DN"_0}^1//3)=(2xx93//8.55xx6.23xx10^23)^1//3=3.306xx10^-8"cm"`
Atomic radius`=r=frac{sqrt 3}{4}a=frac{sqrt 3}{4}xx3.306xx10^-8=1.432xx10^-8"cm"=14.32"nm"`.
Promotional Banner

Topper's Solved these Questions

  • THE SOLID STATE

    NCERT|Exercise Solved Examples|3 Videos
  • THE P-BLOCK ELEMENTS

    NCERT|Exercise EXERCISE|74 Videos

Similar Questions

Explore conceptually related problems

Niobium crystallises in body-centred cubic structure. If the atomic radius is 143.1 pm, calculate the density of Niobium. (Atomic mass = 93u).

Niobium crystallises in body centred cubic structure. If the atomic radius is 143.1 pm, calculate the density of the element. (Atomic mass = 93 u)

A metal (atomic mass = 50 ) has a body centred cubic crystal structure. If the density of the metal is 5.96 g cm^(-3) , calculate the volume of the unit cell.

The metal nickel crystallizes in a face centered cubic structure. Its density is 8.90 gm//cm^(3) . Calculate (a) the length of the edge of a unit cell. (b) the radius of nickel atom. (atomic weight of Ni = 58.89).