Home
Class 12
MATHS
The value of x satisfying the equation (...

The value of `x` satisfying the equation `(6x+2a+3b+c)/(6x+2a-3b-c)=(2x+6a+b+3c)/(2x+6a-b-3c)i s` `(a b)/c` (b) `(2a b)/c` (c) `(a b)/(3c)` (d) `(a b)/(2c)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of x satisfying the equation (6x+2a+3b+c)/(6x+2a-3b-c)=(2x+6a+b+3c)/(2x+6a-b-3c)quad is(ab)/(c)(b)(2ab)/(c)(c)(ab)/(3c) (d) (ab)/(2c)

The value of x satisfying the equation (6x+2a+3b+c)/(6x+2a-3b-c)=(2x+6a+b+3c)/(2x+6a-b-3c) is a. a b//c b. 2a b//c c. a b//3c d. a b//2c

The value of x satisfying the equation (6x+2a+3b+c)/(6x+2a-3b-c)=(2x+6a+b-3c)/(2x+6a-b-3a) is ab/c b.2ab/c c.ab/3c d.ab/2c

Simplify the following:(a-2b+5c) (a-b)-(a-b-c) (2a + 3c) + (6a + b) (2c-3a-5b)

If a , b and c are the side of a triangle, then the minimum value of (2a)/(b+c-a)+(2b)/(c+a-b)+(2c)/(a+b-c)i s (a) 3 (b) 9 (c) 6 (d) 1

If a ,b ,c in R^+ , then the minimum value of a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2) is equal to (a) a b c (b) 2a b c (c) 3a b c (d) 6a b c

If a ,b ,c in R^+ , then the minimum value of a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2) is equal to (a) a b c (b) 2a b c (c) 3a b c (d) 6a b c

If a ,b ,c in R^+ , then the minimum value of a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2) is equal to (a) a b c (b) 2a b c (c) 3a b c (d) 6a b c

If a , ba n dc are the side of a triangle, then the minimum value of (2a)/(b+c-a)+(2b)/(c+a-b)+(2c)/(a+b-c)i s (a) 3 (b) 9 (c) 6 (d) 1

If a , ba n dc are the side of a triangle, then the minimum value of (2a)/(b+c-a)+(2b)/(c+a-b)+(2c)/(a+b-c)i s (a) 3 (b) 9 (c) 6 (d) 1