Home
Class 12
MATHS
If f(x)=((4^(x)-1)^(3))/(sin((x)/(p))log...

If `f(x)=((4^(x)-1)^(3))/(sin((x)/(p))log(1+(x^(2))/(3)))` is cont. at `x=0` and `f(0)=(6log2)^(3)` then `p=`

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=((4^(x)-1)^(3))/(sin((x)/(p))log(1+(x^(2))/(3))) is continuous at x=0 and f(0)=12(ln4)^(3) then p=

If f(x)=((2^(x)-1)^(3))/(sin((x)/(p))log(1+(x^(2))/(3))) is continuous at x=0 and f(0)=6(log2)^(3) then p= (A) 1 (B) 2 (C) 3 (D) 4

If f(x)= ((2^(2)-1)^(3))/(sin((x)/(n))log(1+(x^(4))/(y))) is continuous at x=0 and f(0)= (6log2)^(3) (A) 1 (B) 2 (C) 3 (D) 4

lim_(x rarr0)((4^(x)-1)^(3))/(sin((x)/(p))ln(1+(x^(2))/(3))) is equal to

Determine f(0) so that the function f(x) defined by f(x)=((4^(x)-1)^(3))/(sin(x)/(4)log(1+(x^(2))/(3))) becomes continuous at x=0

If f(x)={{:(((5^(x)-1)^(3))/(sin((x)/(a))log(1+(x^(2))/(3)))",",x ne0),(9(log_(e)5)^(3)",",x=0):} is continuous at x=0 , then value of 'a' equals

f(x)=sqrt(log((3x-x^(2))/(x-1)))

If f(x) is continuous at x=0 , where f(x)={:{(((e^(x)-1)^(4))/(sin(x^(2)/k^(2))log(1+ x^(2)/(2)))", for " x!=0),(8", for " x=0):} , then k=