Home
Class 12
MATHS
The function f(x)=(x)/(1+|x|) is differe...

The function f(x)=`(x)/(1+|x|)` is differentiable on (A) (0 oo) 0 oo) (B) (-oo 0) (C) (D) all the above

Promotional Banner

Similar Questions

Explore conceptually related problems

The set of points where the function f(x)=x|x| is differentiable is (a)(-oo,oo) (b) (-oo,0)uu(0,oo)(c)(0,oo)(d)[0,oo]

The set of points where the function f(x)=x|x| is differentiable is (-oo,oo)(b)(-oo,0)uu(0,oo)(0,oo)(d)[0,oo)

The function f(x)=x^(9)+3x^(7)+64 is increasing on (a) R(b)(-oo,0)(c)(0,oo) (d) R_(0)

Show that f(x)=(1)/(x) is decreasing function on (0,oo)

Show that f(x)=(1)/(x) is a decreasing function on (0,oo)

The function f(x)=log x-(2x)/(x+2) is increasing for all A) x in(-oo,0) , B) x in(-oo,1) C) x in(-1,oo) D) x in(0,oo)

f(x) = x^2 increases on: (a) ( 0,oo) (b) (-oo,0) (c) (-7,-3) (d) (-oo,-3)

The function f(x)=cot^(-1)x+x increases in the interval (a)(1,oo)(b)(-1,oo)(c)(-oo,oo)(d)(0,oo)

The domain of the function f(x)=1/(sqrt(|x|-x)) is: (1) (-oo,oo) (2) (0,oo (3) (-oo,""0) (4) (-oo,oo)"-"{0}

The function f(x)=(1)/(1+x^(2)) is decreasing in the interval (i)(-oo,-1)(ii)(-oo,0)(iii)(1,oo)(iv)(0,oo)