Home
Class 11
MATHS
Find (dy)/(dx) where (i) y=e^(log x)+tan...

Find `(dy)/(dx) where (i) y=e^(log x)+tanx `

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) where (i) y=(cosx log x)

a) Find (dy)/(dx) where (i) y=x^(log x)+(log x)^(x) (ii) y=sin^(-1)((x)/(sqrt(a^(2)+x^(2))))

Find (dy)/(dx) where (i) y=x^(log x)+(log x)^(x) (ii) y=sin^(-1)((x)/(sqrt(a^(2)+x^(2))))

Find (dy)/(dx) ,if : (i) x=y(1+log x)

Find (dy)/(dx), when y=(e^(x)+log x)/(sin3x)

Find (dy)/(dx), when y=e^(x)log(1+x^(2))

Find (dy)/(dx) of y=x^((log)_e x)

Find (dy)/(dx) when : y=(x+tanx)/(tanx)

Find (dy)/(dx) , if y=cos(log x+e^(x)) ,x>0

Find (dy)/(dx), if y=cos(log x+e^(x)) ,x>0