Home
Class 12
MATHS
Let f:R rarr R be defined by f(x)={({x} ...

Let `f:R rarr R` be defined by `f(x)={({x} if x in Q),(x if x in R-Q):}`
If `lim_(x rarr alpha)f(x)` exist, then the true set of values of `alpha` is - (where `{k}` denotes the fractional part of `k`)
a) `(-1, 1)` b) `(-1, 0)` c) ` ( 0,1 )` d) `[0, 1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:R rarr R be defined by f(x)={({x} if x in Q),(x if x in R-Q):} If lim_(x rarr alpha)f(x) exist then the true set of values of alpha is {k} denotes the fractional part of k

The value of lim_(x rarr0)sin^(-1){x}( where {*} denotes fractional part of x ) is

Let f:R rarr R be defined by f(x)=(x)/(x^(2)+1) Then (fof(1) equals

Find the value of lim_(x rarr0)(ln(1+{x}))/({x}) where {x} denotes the fractional part of x .

Let f:R rarr R be defined by f(x)={x+2x^(2)sin((1)/(x)) for x!=0,0 for x=0 then

A function f:R rarr R is defined by f(x)={1,quad if x in Q-1, if x in(R-Q) the value of f(pi)-f((22)/(7)) is

Let f:R rarr R be the function defined by f(x)=x^(3)+5 then f^(-1)(x) is

Let f:R rarr R be defined by f(x)=2+alpha x,alpha!=0 , If f(x)=f^(-1)(x) , for all x in R , then alpha equals

If f(x)=e^(x), then lim_(x rarr oo)f(f(x))^((1)/()(x)})); is equal to (where {x} denotes fractional part of x).

Let f:R rarr R be defined by, f(x)={[k-x;x le-1],[x^(2)+3,,xgt-1] .If f(x) has least value at x=-1 , then the possible value of k is