Home
Class 12
MATHS
cos^(-1)(cos^(2)x-sin^(2)x)...

`cos^(-1)(cos^(2)x-sin^(2)x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=det[[sin^(2)x,cos^(2)x,1cos^(2)x,sin^(2)x,1x-12,12,2]] then f'((pi)/(2))=

If f(x)=|(sin^(2)x, cos^(2)x,1),(cos^(2)x,sin^(2)x,1),(-10,12,2)| , then intf(x)dx=

|(sin^(2) x,cos^(2) x,1),(cos^(2) x,sin^(2) x,1),(- 10,12,2)| =

If maximum and minimum values of the determinant |{:(1 + cos^(2)x , sin^(2) x, cos 2x),(cos^(2) x , 1 + sin^(2)x, cos 2x),(cos^(2) x , sin^(2) x , 1 + cos 2 x):}| are alpha and beta then

If 0

" if "A=[[cos^(2)x,sin^(2)x],[-sin^(2)x,-cos^(2)x]]" and "B=[[sin^(2)x,cos^(2)x],[-cos^(2)x,-sin^(2)x]]" then find "A+B"

Solve: [[cos^(2)x, sin^(2)x],[sin^(2)x, cos^(2)x]]+[[sin^(2)x, cos^(2)x],[cos^(2)x, sin^(2)x]]

sin^(4)x+cos^(4)x=1-2sin^(2)x cos^(2)x

" If determinant "|[cos^(2)x,sin^(2)x,cos^(2)x],[sin^(2)x,cos^(2)x,sin^(2)x],[cos^(2)x,sin^(2)x,-cos^(2)x]|" is expanded as a function of "sin^(2)x" ,then the absolute value of constant term in expansion of function "