Home
Class 12
MATHS
If a !=b != c, lf ax + by + c = 0, bx...

If `a !=b != c`, lf `ax + by + c = 0, bx + cy + a = 0 and cx+ay + b = 0` are concurrent. Then the value of `2^(a^2 b^-1 c^-1) 2^(b^2 c^-1 a^-1) 2^(c^2 a^-1 b^-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the lines ax + by + c = 0, bx + cy + a = 0 and cx + ay + b = 0 be concurrent, then:

The lines ax+by+c=0, bx+cy+a =0, cx+ay+b =0 are concurrent when-

If a ne b ne c and if ax+by+c=0, bx+cy+a=0, cx+ay+b=0 are concurrent then 2^(a^(2)b^(-1)c^(-1)).2^(b^(2)c^(-1)a^(-1))2^(c^(2)a^(-1)b^(-1))=

If the lines ax+by+c=0,bx+cy+a=0 and cx+ay+b=0 be concurrent,then:

If the lines ax+by+c=0, bx+cy+a=0 and Cx+ay+b=0 are concurrent (a+b+cne0) then

If the lines ax + 2y + 1 = 0, bx + 3y + 1 = 0, cx + 4y + 1 = 0 are concurrent, then a, b, c are in

If the lines ax+by+c=0,bx+cy+a=0 and cx+ay+b=0a!=b!=c are concurrent then the point of concurrency is