Home
Class 12
MATHS
" The value of "int(0)^( pi/4)log(1+tan ...

" The value of "int_(0)^( pi/4)log(1+tan x)dx" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^((pi)/(2))log(tan x)dx is equal to -

int_(0)^((pi)/(2))log(tan x)*dx

Evaluate int_(0)^((pi)/(4))log(1+tan x)dx

Evaluate :int_(0)^((pi)/(4))log(1+tan x)dx

Prove that int_(a)^(b) f(x)dx= int_(a)^(b) f (a+b-x)dx" hence evaluate " int_(0)^(pi/4) log(1+tan x)dx .