Home
Class 11
MATHS
" lve "|x-3|+|x-2|=1...

" lve "|x-3|+|x-2|=1

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=||x-1|+|x-3|-|2x-1||+||x-1|+|x-3|+|2x-1|| , then

Solve for x :4^x-3^(x-1//2)=3^(x+1//2)-2^(2x-1) .

Solve for x :4^x-3^(x-1//2)=3^(x+1//2)-2^(2x-1) .

Solve for x :4^x-3^(x-1//2)=3^(x+1//2)-2^(2x-1) .

Solve for x :4^x-3^(x-1/2)=3^(x+1/2)-2^(2x-1)

Check whether the following are quadratic equations : (1) (x-1)^(2)=2(x-3) (2) x^(2)-2x=(-2)(3-x) (3) (x-2)(x+1)=(x-1)(x+3) (4) (x-3)(2x+1)=x(x+5) (5) (2x-1)(x-3)=(x+5)(x-1) (6) x^(2)+3x+1=(x-2)^(2) (7) (x+2)^(3)=2x(x^(2)-1) (8) x^(3)-4x^(2)-x+1=(x-2)^(3)

The value of |[2x_1y_1, x_1y_2+x_2y_1, x_1y_3+x_3y_1], [x_1y_2+x_2y_1, 2x_2y_2, x_2y_3+x_3y_2], [x_1y_3+x_3y_1, x_2y_3+x_3y_2, 2x_3y_3]| is.

The value of |[2x_1y_1, x_1y_2+x_2y_1, x_1y_3+x_3y_1], [x_1y_2+x_2y_1, 2x_2y_2, x_2y_3+x_3y_2], [x_1y_3+x_3y_1, x_2y_3+x_3y_2, 2x_3y_3]| is.

The value of |2x_1y_1x_1y_2+x_2y_1x_1y_3+x_3y_1x_1y_2+x_2y_1 2x_2y_2x_2y_3+x_3y_2x_1y_3+x_3y_1x_2y_3+x_3y_2 2x _3y_3| is.