Home
Class 9
MATHS
" (i) "2^(5x)+2^(x)=root(5)(2^(20))...

" (i) "2^(5x)+2^(x)=root(5)(2^(20))

Promotional Banner

Similar Questions

Explore conceptually related problems

If 2^(5x)-:2^(x)=root(5)(32). Then find the value of x

Find the value of x in each of the following . (i) root5(5x + 2) = 2 (ii) root3(3x - 2) =4 (iii) ((3)/(4))^(3)((4)/(3))^(-7)= ((3)/(4))^(2x) (iv) 5^(x-3) xx 3^(2x -8) = 225 (v) (3^(3x) . 3^(2x))/(3^(x)) = root4(3^(20))

The number of negative real roots of the equation (x ^(2)+5x) ^(2) -24 =2 (x^(2) +5x) is :

The number of negative real roots of the equation (x ^(2)+5x) ^(2) -24 =2 (x^(2) +5x) is :

The number of real roots of the equation (x^(2)+5x+6)^(2)+5(x^(2)+5x+6)+6-x=0 is

underset(x to 0)"Lt" (root5(2+x)-root5(2-x))/(sin hx)=

The number of irrational roots of the equation (4x)/(x^(2)+x+3)+(5x)/(x^(2)-5x+3)=-(3)/(2) is a.4