Home
Class 10
MATHS
" iii) If "y=e^(a sin^(-1)x),-1<=x<=1," ...

" iii) If "y=e^(a sin^(-1)x),-1<=x<=1," then show that "(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-a^(2)y=0

Promotional Banner

Similar Questions

Explore conceptually related problems

" 1(a) If "y=e^(a sin^(-1)x)" ,show that "(1-x^(2))y_(2)-xy_(1)-a^(2)y=0

If y=e^(a)sin^((-1_(x))),-1<=x<=1, then show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-a^(2)y=0

If y= e^(a sin^-1 x) , [-1le x le 1] then show that (1 -x^2) (d^2y) /(dx^2) - xdy/dx -a^2y =0 .

If y = e^(m sin^(-1) x) and (1-x^(2)) ((dy)/(dx))^(2) = Ay^(2) , then A is equal to

If y= e^(m sin ^(-1) x) and (1-x^(2))((dy)/(dx))^(2)= Ay^(2). then A =

If y= e^(m sin ^(-1)x) and (1-x^(2))((dy)/(dx))^(2)= Ay^(2). then A =

If y=e^(sin^(-1)x)+e^(cos^(-1)x),0ltxlt1 , then

If y=e^(m sin^(-1)x) then prove that (1-x^2) y_2 - xy_1 = m^2 y