Home
Class 11
MATHS
" 11."1^(3)+3^(3)+5^(3)+...+(2n-1)^(3)=n...

" 11."1^(3)+3^(3)+5^(3)+...+(2n-1)^(3)=n^(2)(2n^(2)-1)

Promotional Banner

Similar Questions

Explore conceptually related problems

(1^(3)+2^(3)+...+n^(3))/(1+3+5+...+(2n-1))=((n+1)^( 2))/(4)

Prove that by using the principle of mathematical induction for all n in N : 1.3+ 2.3^(2)+ 3.3^(3)+ ....+ n.3^(n)= ((2n-1)3^(n+1)+3)/(4)

Prove that by using the principle of mathematical induction for all n in N : 1.3+ 2.3^(2)+ 3.3.^(3)+ ....+ n.3^(n)= ((2n-1)3^(n+1)+3)/(4)

Prove that by using the principle of mathematical induction for all n in N : 1.3+ 2.3^(2)+ 3.3.^(3)+ ....+ n.3^(n)= ((2n-1)3^(n+1)+3)/(4)

(1)/(2n^(2)-1)+(1)/(3(2n^(2)-1)^(3))+(1)/(5(2n^(2)-1)^(5))+....=

Using the principle of mathematical induction, prove that 1.3 + 2.3^(2) + 3.3^(2) + ... + n.3^(n) = ((2n-1)(3)^(n+1)+3)/(4) for all n in N .

Using the principle of mathematical induction, prove that 1.3 + 2.3^(2) + 3.3^(2) + ... + n.3^(n) = ((2n-1)(3)^(n+1)+3)/(4) for all n in N .

1^(3)+2^(3)+3^(3)+.....+n^(3)=(n(n+1)^(2))/(4), n in N

1.3+3.5+5.7+......+(2n-1)(2n+1)=(n(4n^(2)+6n-1))/(3)