Home
Class 12
MATHS
Rolle's theorem holds for the function x...

Rolle's theorem holds for the function `x^3+bx^2+cx, le x le 2` at then point `4/3,` then value of `b and c` are (a) `b=8,c=-5` (b) `b=-5,c=8` (c) `b=5,c=-8` (d) `b=-5,c=-8`

Promotional Banner

Similar Questions

Explore conceptually related problems

Rolle's theorem hold for the function f(x)=x^(3)+bx^(2)+cx,1 le x le2 at the point 4/3, the values of b and c are

Rolle's theorem holds for the function x^(3) + bx^(2) + cx, 1 le x le2 at the point (4)/(3) , then vaue of b and c are

Rolle's theorem holds for the function f(x)=x^(3)+bx^(2)+cx, 1 le x le 2 at the point (4)/(3) , the values of b and c are :

If a=7, b=5, c=3, then the value of a^2+b^2+c^2-a b-b c-c a i s -12 (b) 0 (c) 8 (d) 12

Find the value of (-9/5 +( -8/5 ) ÷ 5/2 times (-5/4 ) ) (a) -1 (b) -3 (c) 2 (d) -8

If a=7,\ b=5,\ c=3, then the value of a^2+b^2+c^2-a b-b c-c a\ i s -12 (b) 0 (c) 8 (d) 12

If a : b=4:5 and b : c=2:3, then a : c (a) 4:3 (b) 8: 15 (c) 8:9 (d) 5:3

If the conditions of Rolle's theorem are satisfied by the function f(x)=x^(3)+ax^(2)+bx-5 in 1 le x le 3 with c=2+(1)/(sqrt(3)) , then the values of a and b are -