Home
Class 12
MATHS
5,2n ln^(-1)((3)/(5))-tan^(-1)((17)/(31)...

5,2n ln^(-1)((3)/(5))-tan^(-1)((17)/(31))=(pi)/(4)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : 2tan^(-1)((3)/(4))-tan^(-1)((17)/(31))=(pi)/(4) .

tan^(-1)((3)/(n))+tan^(-1)((4)/(n))=(pi)/(2)

Prove that 2sin^(-1)[(3)/(5)]-tan^(-1)[(17)/(31)]=(pi)/(4)

Prove that 2tan^(-1)""(3)/(4)-tan^(-1)""(17)/(31)=(pi)/(4)

Prove the following: 2\ tan^(-1)(3/4)-tan^(-1)((17)/(31))=pi/4

For n in N ,if tan^(-1)((1)/(3))+tan^(-1)((1)/(4))+tan^(-1)((1)/(5))+tan^(-1)((1)/(n))=(pi)/(4) ,then (n-2)/(15) is equal to

tan[2tan^(-1)((1)/(5))+(pi)/(4)]

Prove that tan^(-1)""(3)/(4)+tan^(-1)""(3)/(5)-tan^(-1)""(8)/(19)=(pi)/(4)

Show that : 2 sin^(-1) (3/5)-tan^(-1) (17/31) = pi/4

tan^(-1)((n-5)/(n-6))+tan^(-1)((n+5)/(n+6))=(pi)/(4)