Home
Class 12
MATHS
lim(x rarr 0) (e^x - e^sinx)/(2(x - sinx...

`lim_(x rarr 0) (e^x - e^sinx)/(2(x - sinx)) = `

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(e^(x)-e^(sin x))/(2(x-sin x))=

lim_(x rarr0)(e^(x)-e^(sin x))/(2(x-sin x))=

lim_(x rarr0)(e^(x)-e^(sin x))/(3(x-sin x))

The value of lim_(x to 0) (e^x-e^sinx)/(2(x-sinx)) , is

lim_(x rarr0)(e^(x)-e^(sin x))/(x-sin x)

lim_(x rarr 0) (e^x+e^-x-2 cosx)/(x sinx)

lim_(x to 0) (e^x-e^sinx)/(x-sinx)

lim_(x rarr0)((e^(3x)-e^(2x))/(x))