Home
Class 11
MATHS
If g: -3 3 rarr R where g(x)=x^(5)+sin x...

If g: -3 3 rarr R where g(x)=x^(5)+sin x+ (x^(2)+1)/(lambda) is an odd function then value of parameter lambda is (where * represents greatest integer function)

Promotional Banner

Similar Questions

Explore conceptually related problems

If g: -3 3 rarr R where g(x)=x^(5)+sin x+ (x^(2)+1)/(1)-1 is an odd function then value of parameter lambda is (where ) represents greatest integer function)

If g: -3 3 rarr R where g(x)=x^(5)+sin x+ (x^(2)+1)/(2) is an odd function then value of parameter lambda is (where ) represents greatest integer

If g: -3 3 rarr R where g(x)=x^(5)+sin x+ (x^(2)+1)/(2) is an odd function then value of parameter lambda is (where ) represents greatest integer

If f:[-4,4] rarr R where f(x)=x^(3)+tan x+[(x^(2)+1)/(lambda)] is an odd function then the range of values of lambda is :- (where [.] denotes greatest integer function)

Let f: [-3,3] rarr R where f(x)= x^(3)+sin x+[(x^(2)+2)/(a)] be an odd function then value of a is where [.] represents greatest integer functions

Let f:[-10,10]rarr R where f(x)=sin x+[(x^(2))/(a)] be an odd function. Then set of values of parameter a is/are ( [.] denotes greatest integer function)

If g:[-2,2]rarr R, where f(x)=x^(3)+tan x+[(x^(2)+1)/(P)] is an odd function,then the range of parametric P, where I.] denotes the greatest integer function,is

The value of lim_(x rarr pi)sgn[tan x], where [.] represents greatest integer function,

If -2<[x^(2)-5]<=3 then the range of x is, where [.] represents greatest integer function

Let f[-3,3]rarr R where f(x)=x^(3)+sin x+[(x^(2)+2)/(a)], be an odd function (where [.] represents greatest integer function).Then the value of a is