Home
Class 11
MATHS
If tan^(-1)(x+1)+ tan^(-1)(x-1)= tan^(-1...

If `tan^(-1)(x+1)+ tan^(-1)(x-1)= tan^(-1)(8/31)`,then x is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)(n+1)+tan^(-1)(n-1)=tan^(-1)(8/31)

Solve the following equations : tan^(-1) (x+1) +tan^(-1) (x-1) = tan^(-1) (8/31 ) , x gt 0

If tan^(-1)x+tan^(-1)(1-x)=tan^(-1)(4/3) then x=

Solve for x:tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((8)/(31))

If tan^(-1) 3 +tan^(-1)x=tan^(-1)8 then x =

If tan^(-1) x + tan^(-1)y + tan^(-1)z= pi then x + y + z is equal to

If 2tan^(- 1)(c o s e c(tan^(- 1)(x))-tan(cot^(- 1)(x)))=tan^(- 1)y then y is equal to

tan^(-1)(x-1)+tan^(-1)(x+1)=(pi)/(4)