Home
Class 11
MATHS
tan^(-1)(1/(a-1))=tan^(-1)(1/x)+tan^(-1)...

`tan^(-1)(1/(a-1))=tan^(-1)(1/x)+tan^(-1)((1)/(a^(2)-x+1))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If xy=1+a^(2) then show that tan^(-1)((1)/(a+x))+tan^(-1)((1)/(a+y))=tan^(-1)((1)/(a)),x+y+2a!=0

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

tan^(-1)((1)/(1+2x))+tan^(-1)((1)/(1+4x))=tan^(-1)((2)/(x^) (2)))

Solve tan^(-1) ((x+1)/(x-1)) + tan^(-1) ((x-1)/x) = tan^(-1)(-7)

Solve : 3 tan^(-1) (1/(2+sqrt(3)))-tan^(-1)(1/x) = tan^(-1) (1/3)

(tan^(-1)x)/(1+tan^(-1)x)" w.r.t."tan^(-1)x

Solve the equation tan^(-1)((x+1)/(x-1))+tan^(-1)((x-1)/(x))=tan^(-1)(-7)

tan(1/2)(tan^(-1)x+tan^(-1)(1/x))=1