Home
Class 12
MATHS
If f(x)=x^5+x^2+1 has roots x1,x2,x3,...

If `f(x)=x^5+x^2+1` has roots `x_1,x_2,x_3,x_4,x_5 and g(x)=x^2-2` then `g(x_1)g(x_2)g(x_3)g(x_4)g(x_5)-30g(x_1 x_2 x_3 x_4 x_5)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If p(x)=x^(5)+x^(2)+1 and p(x)=0 has zeros x_(1),x_(2),x_(3),x_(4),x_(5) and quad if g(x)=x-2 then find -g(x_(1))g(x_(2))g(x_(3))g(x_(4))g(x_(5))

If f(x)=x^2 and g(x)=x^2+1 then: (f@g)(x)=(g@f)(x)=

If f(x)=1+2x and g(x) = x/2 , then: (f@g)(x)-(g@f)(x)=

If f(x)=x^(3) and g(x)=x^(2)//5 , then f(x)-g(x) will be

If f(x)=3x+1 and g(x)=x^(3)+2 then ((f+g)/(f*g))(0) is:

If g(x)=x^(2)+x-2 and (1)/(2)g(f(x))=2x^(2)-5x+2, then f(x) is

If f (x) = 3x -1, g (x) =x ^(2) + 1 then f [g (x)]=

If, from RtoR,f(x)=(x+1)^2 and g(x)=x^2+1, then: (f@g)(-3)=

If g(x)=x^(2)+x+x-1 and g(f(x))=4x^(2)-10x+5 then find f((5)/(4))

f(x) is a twice differentiable function and g(x) is defined as g(x)=(fprime(x))^2+f prime prime(x)*f(x) on [x_1,x_2]. If x_1 < x_2 < x_3 < x_4 < x_5 < x_6 < x_7,f(x_1)=0,f(x_2)=2,f(x_3)=-3,f(x_4)=4,f(x_5)=-5,f(x_6) and f(x_7)=0, then the minimum number of real roots of g(x)=0 can be