Home
Class 12
PHYSICS
Figure shows a system consisting of a ma...

Figure shows a system consisting of a massless pulley, a spring of force constant k and ablock of mass m. If the block is slightly displaced vertically down from its equillibrium position and then released, find the period of its vertical oscillation in cases (a) & (b).

Text Solution

Verified by Experts

Let us assume that in equillibrium condition spring is `x_(0)` elongate from its natural length
In equilibrium `T_(0) = mg and kx_(0) = 2T_(0)`
`implies kx_(0) = 2 mg " " cdots (1)`
If the mass m moves down a distance x from its equilibrium position then pulley will move down by `(x)/(2)` . So the extra force in spring will be `(kx)/(2)` . From figure `F _("net") = mg -T = mg -(k)/(2) (x_(0) + (x)/(2))`
`F_("net") = mg - (kx_(0))/(2)- (kx)/(2)`
From eq. (1)
`F_("net") = (-kx)/(4) " " cdots (3)`
Now compare eq . (3) with F = - `K_(S.H.M) x ` then `K_(S.H.M)= (K)/(4)`
`implies T = 2pir T = 2pi sqrt((m)/(K_(S.H.M.)))=2pisqrt((4m)/(k))`

CASE (B) :
in this situiation of the mass m moves down distance x form its equilibrium position , then pulley will alspo move by x and so the spring will stetch by 2x .
Promotional Banner

Topper's Solved these Questions

  • SIMPLE HARONIC MOTION

    MOTION|Exercise EXERCISE -1 ( SECTION-A )|8 Videos
  • SIMPLE HARONIC MOTION

    MOTION|Exercise EXERCISE -1 ( SECTION-B ) (Time per iod and angu larfrequency in SHM)|8 Videos
  • SIMPLE HARMONIC MOTION

    MOTION|Exercise EXERCISE -3 Section - B Previous Year Problems | JEE MAIN|23 Videos
  • SOUND WAVES

    MOTION|Exercise Exercise - 3 (Section - B)|14 Videos

Similar Questions

Explore conceptually related problems

Figure shows a system consisting of a massless pulley, a spring of force constant k and a block of mass m. If the block is slightly displaced vertically down from is equilibrium position and then released, the period of its vertical oscillation is

Figure shows a system consisting of a massles pulley, a spring of force constant k and a block of mass m . If the block is sligthtly displaced vertically down from its equilibrium and released, find the period of its vertical oscillation in cases (a) and (b).

Figure shows a system consisting of pulley having radius R, a spring of force constant k and a block of mass m. Find the period of its vertical oscillation.

In the following arrangements, bock is slightly displaced vertically down from its equilibrium position and released. Find time period of vertical oscillations. The pulley is light.

A system shown in the figure consists of a massless pulley, a spring of force constant k displaced vertically downwards from its equilibrium position and released, then the Period of vertical oscillations is

Find the time period of mass M when displaced from its equilibrium position and then released for the system shown in figure.

On applying a force F the mass M is displaced vertically down by from equilibrium position, Find the force F in terms of the force constant k of the spring and displacement y for the cases (A) and (B) as shown in

A block of mass m hangs from a vertical spring of spring constant k. If it is displaced from its equilibrium position, find the time period of oscillations.