Home
Class 12
MATHS
If alpha, beta are the roots of x^2 - ...

If `alpha, beta` are the roots of `x^2 - sqrt(3)x + 1 = 0` then `alpha^(21) + beta^(21)` is:

A

`0`

B

`sqrt(3)`

C

`-sqrt(3)`

D

`1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \alpha^{21} + \beta^{21} \), where \( \alpha \) and \( \beta \) are the roots of the quadratic equation \( x^2 - \sqrt{3}x + 1 = 0 \). ### Step 1: Find the roots of the quadratic equation The roots of the quadratic equation \( ax^2 + bx + c = 0 \) can be found using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] For our equation, \( a = 1 \), \( b = -\sqrt{3} \), and \( c = 1 \). Substituting these values into the formula gives: \[ x = \frac{\sqrt{3} \pm \sqrt{(\sqrt{3})^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} \] Calculating the discriminant: \[ (\sqrt{3})^2 - 4 \cdot 1 \cdot 1 = 3 - 4 = -1 \] Thus, we have: \[ x = \frac{\sqrt{3} \pm \sqrt{-1}}{2} = \frac{\sqrt{3}}{2} \pm \frac{i}{2} \] So, the roots are: \[ \alpha = \frac{\sqrt{3}}{2} + \frac{i}{2}, \quad \beta = \frac{\sqrt{3}}{2} - \frac{i}{2} \] ### Step 2: Express the roots in exponential form We can express \( \alpha \) and \( \beta \) in terms of trigonometric functions: \[ \alpha = \cos\left(\frac{\pi}{6}\right) + i \sin\left(\frac{\pi}{6}\right), \quad \beta = \cos\left(\frac{\pi}{6}\right) - i \sin\left(\frac{\pi}{6}\right) \] This means: \[ \alpha = e^{i \frac{\pi}{6}}, \quad \beta = e^{-i \frac{\pi}{6}} \] ### Step 3: Calculate \( \alpha^{21} \) and \( \beta^{21} \) Using the property of exponents: \[ \alpha^{21} = \left(e^{i \frac{\pi}{6}}\right)^{21} = e^{i \frac{21\pi}{6}} = e^{i \frac{7\pi}{2}} \] \[ \beta^{21} = \left(e^{-i \frac{\pi}{6}}\right)^{21} = e^{-i \frac{21\pi}{6}} = e^{-i \frac{7\pi}{2}} \] ### Step 4: Simplify \( \alpha^{21} + \beta^{21} \) Now, we can add \( \alpha^{21} \) and \( \beta^{21} \): \[ \alpha^{21} + \beta^{21} = e^{i \frac{7\pi}{2}} + e^{-i \frac{7\pi}{2}} \] Using Euler's formula, this simplifies to: \[ \alpha^{21} + \beta^{21} = 2 \cos\left(\frac{7\pi}{2}\right) \] ### Step 5: Find \( \cos\left(\frac{7\pi}{2}\right) \) To find \( \cos\left(\frac{7\pi}{2}\right) \), we can reduce it: \[ \frac{7\pi}{2} = 3\pi + \frac{\pi}{2} \quad \text{(since } 3\pi \text{ is } 2\pi + \pi\text{)} \] Thus: \[ \cos\left(\frac{7\pi}{2}\right) = \cos\left(\frac{\pi}{2}\right) = 0 \] ### Step 6: Final result Substituting back, we find: \[ \alpha^{21} + \beta^{21} = 2 \cdot 0 = 0 \] Thus, the final answer is: \[ \boxed{0} \]

To solve the problem, we need to find the value of \( \alpha^{21} + \beta^{21} \), where \( \alpha \) and \( \beta \) are the roots of the quadratic equation \( x^2 - \sqrt{3}x + 1 = 0 \). ### Step 1: Find the roots of the quadratic equation The roots of the quadratic equation \( ax^2 + bx + c = 0 \) can be found using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] For our equation, \( a = 1 \), \( b = -\sqrt{3} \), and \( c = 1 \). ...
Promotional Banner