Home
Class 12
MATHS
int(0)^(pi) sin^(4) x cos^(2)xdx =...

`int_(0)^(pi) sin^(4) x cos^(2)xdx `=

A

0

B

`pi/132`

C

`pi/16`

D

`pi/8`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int_0^{\pi} \sin^4 x \cos^2 x \, dx \), we can follow these steps: ### Step 1: Use the property of definite integrals We can use the property of definite integrals: \[ \int_0^{2a} f(x) \, dx = \int_0^a f(x) \, dx + \int_0^a f(2a - x) \, dx \] In our case, let \( a = \pi/2 \) and \( f(x) = \sin^4 x \cos^2 x \). Then, \[ I = \int_0^{\pi} \sin^4 x \cos^2 x \, dx = \int_0^{\pi/2} \sin^4 x \cos^2 x \, dx + \int_0^{\pi/2} \sin^4(\pi - x) \cos^2(\pi - x) \, dx \] Since \( \sin(\pi - x) = \sin x \) and \( \cos(\pi - x) = -\cos x \), we have: \[ I = 2 \int_0^{\pi/2} \sin^4 x \cos^2 x \, dx \] ### Step 2: Substitute \( \cos^2 x \) Next, we can express \( \cos^2 x \) in terms of \( \sin^2 x \): \[ \cos^2 x = 1 - \sin^2 x \] Thus, we rewrite the integral: \[ I = 2 \int_0^{\pi/2} \sin^4 x (1 - \sin^2 x) \, dx \] This simplifies to: \[ I = 2 \left( \int_0^{\pi/2} \sin^4 x \, dx - \int_0^{\pi/2} \sin^6 x \, dx \right) \] ### Step 3: Use the reduction formula We will use the reduction formula for integrals of the form \( \int_0^{\pi/2} \sin^n x \, dx \): \[ G_n = \int_0^{\pi/2} \sin^n x \, dx = \frac{n-1}{n} G_{n-2} \] Calculating \( G_4 \) and \( G_6 \): 1. For \( G_4 \): \[ G_4 = \frac{3}{4} G_2 \] And \( G_2 = \int_0^{\pi/2} \sin^2 x \, dx = \frac{\pi}{4} \), so: \[ G_4 = \frac{3}{4} \cdot \frac{\pi}{4} = \frac{3\pi}{16} \] 2. For \( G_6 \): \[ G_6 = \frac{5}{6} G_4 = \frac{5}{6} \cdot \frac{3\pi}{16} = \frac{15\pi}{96} = \frac{5\pi}{32} \] ### Step 4: Substitute back into the equation for \( I \) Now we substitute \( G_4 \) and \( G_6 \) back into the expression for \( I \): \[ I = 2 \left( G_4 - G_6 \right) = 2 \left( \frac{3\pi}{16} - \frac{5\pi}{32} \right) \] To combine these, we need a common denominator: \[ \frac{3\pi}{16} = \frac{6\pi}{32} \] Thus: \[ I = 2 \left( \frac{6\pi}{32} - \frac{5\pi}{32} \right) = 2 \left( \frac{\pi}{32} \right) = \frac{\pi}{16} \] ### Final Answer The value of the integral is: \[ \boxed{\frac{\pi}{16}} \]

To evaluate the integral \( I = \int_0^{\pi} \sin^4 x \cos^2 x \, dx \), we can follow these steps: ### Step 1: Use the property of definite integrals We can use the property of definite integrals: \[ \int_0^{2a} f(x) \, dx = \int_0^a f(x) \, dx + \int_0^a f(2a - x) \, dx \] In our case, let \( a = \pi/2 \) and \( f(x) = \sin^4 x \cos^2 x \). Then, ...
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(2 pi)sin^(3)x cos^(2)xdx

int_(0)^( pi/2)sin^(6)x cos^(2)xdx

int_(0)^( pi)x sin^(7)x cos^(6)xdx

"int_(0)^( pi)sin^(7)x cos^(3)xdx

int_(0)^( pi)sin^(3)x cos^(3)xdx

int_(0)^( pi)sin^(3)x cos^(6)xdx

int_(0)^( pi)sin^(8)x cos^(6)xdx

int_(0)^( pi)x sin x cos^(2)xdx

int_(0)^( pi/2)sin^(8)x cos^(2)xdx=

int_(0)^( pi/2)sin^(3)x*cos^(2)xdx