Home
Class 12
MATHS
Let A = [(1,0),(2,3)] and A^(n) = [(a, b...

Let `A = [(1,0),(2,3)] and A^(n) = [(a, b),(c,d)]` then `lim_(n to oo) (b + c)/(a + d)` =

Text Solution

Verified by Experts

The correct Answer is:
1

`A = [(1,0),(2,3)], A^2 = [(1,0),(2 + 2 xx 3, 3^2]`
`A^3 = [(1,0),(2+2xx3+2xx3^2,3^3)]`
Hence `A^(n) = [(1,0),(2+2xx3+....+2xx3^(n-1),3^n)]= [(a,b),(c,d)]`
`implies lim_(n to oo) (b + c)/(a + d) = lim_(n to oo)(2 + 2 xx 3 + 2 xx 3^2 + ……+ 2 xx 3^(n-1))/(1 + 3^n) = lim_(n to oo) (3^(n) - 1)/(3^n + 1) = 1`.
Promotional Banner

Similar Questions

Explore conceptually related problems

If 0 lt a lt b, " then " lim_(n to oo) (a^(n)+b^(n))/(a^(n)-b^(n))

lim_(n to oo) 1/n =0 , lim_( n to oo) 1/n^2

If A= [(1,0),(1,1)] then (A) A^-n=[(1,0),(-n,1)] , n epsilon N (B) lim_(n rarr 00)1/n^2 A^-n = [(0,0),(0,0)] (C) lim_(nrarroo)1/n A^-n = [(0,0),(-1,0)] (D) none of these

Let C_ (n) = int _ ((1) / (n) +1) ^ ((1) / (n)) (tan ^ (- 1) (nx)) / (sin ^ (- 1) (nx) ) dx then lim_ (n rarr oo) n ^ (2) C_ (n) =

Let a=n(a+(1)/(In(n))) and b=(n+(1)/(ln(n)))^(n). The value of lim_(n rarr oo)((a)/(b)) is equal to

Let A,=([1,-(x)/(n)(x)/(n),1]),B=([0,-11,0]) then lim_(x rarr0)[lim_(n rarr oo)(1)/(x)(I-A^(n))] equals

If alpha, beta be the roots of ax^(2)+bx+c=0(a, b, c in R), (c )/(a)lt 1 and b^(2)-4ac lt 0, f(n)= sum_(r=1)^(n)|alpha|^(r )+|beta|^(r ) , then lim_(n to oo)f(n) is equal to

Let S={n in N ,[(0,i),(i,0)]^n[(a,b),(c,d)]=[(a,b),(c,d)] forall a,b,c,d in R. Find the number of 2-digit numbers in S

Let a and b be two real numbers such that a>1,b>1. If A=([a,00,b]), then (lim_(n rarr oo)A^(-n) is (a) unit matrix (b) null matrix (c) 2I (d) non of these