Home
Class 12
MATHS
Let z = (1 + 2 icos theta)/(2 - i sin th...

Let `z = (1 + 2 icos theta)/(2 - i sin theta)` and set S consist of values of `theta in (0, 2pi)` such that `z = barz` then number of elements in set S is :

Text Solution

Verified by Experts

The correct Answer is:
2

`z = (1 + 2 icos theta)/(2 - I sin theta) barz = implies z` is purely real
`z = ((1 + 2icos theta)(2 + isin theta))/(4 + sin^2 theta)`
`lim(z) = (4 cos theta + sin theta)/(4 + sin^2 theta) = 0 implies tan theta = - 4`
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^2 theta = 1+cos^6 theta then number of values of theta in range (0, 2pi) is

If (3+2i sin theta)/(1-2i sin theta) is a real number and 0

If (3+2i sin theta)/(1-2i sin theta) is a real number and 0

If z = (1+cos theta + i sin theta)/(sin theta + i(1+cos theta))(0 lt theta lt pi//2) then |z| equals

Consider the complex number z = (1 - isin theta)//(1+ icos theta) . The value of theta for which z is purely real are

The number of roots of (1-tan theta) (1+sin 2 theta)=1+tan theta for theta in [0, 2pi] is

If the real part of the complex number z = ( 3 + 2 i cos theta)/( 1 - 3 i cos theta) , theta in (0, (pi)/(2)) is zero, then the value of sin^(2) 3 theta + cos ^(2) theta is equal to _____