Home
Class 11
MATHS
If tanalpha=1/(1+2^(-x)) and tanbeta=1/(...

If `tanalpha=1/(1+2^(-x)) and tanbeta=1/(1+2^(x+1)),` then write the value of `alpha+beta` lying in the interval `(0,pi//2)` .

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan alpha=(1)/(1+2^(-x)) and tan beta=(1)/(1+2^(x+1)) then write the value of alpha+beta lying in the interval (0,pi/2) .

If tan alpha =(1+2^(-x))^(-1) and tan beta =(1+2^(x+1))^(-1) then the value of (alpha + beta) is-

If tanalpha=(1+2^(-x))^(-1), tanbeta=(1+2^(x+1))^(-1) , then alpha+beta=

Given that tanalpha=m//(m+1),tanbeta=1//(2m+1) , then what is the value of alpha+beta ?

If tanalpha=(1+2^(-x))^(-1) , tanbeta=(1+2^(x+1))^(-1) , then alpha+beta equals

If tanalpha=m/(m+1) and tanbeta=1/(2m+1) . Find the possible values of (alpha+beta)

If tanalpha=m/(m+1) and tanbeta=1/(2m+1) . Find the possible values of tan(alpha+beta)

If tanalpha=m/(m+1) and tanbeta=1/(2m+1) . Find the possible values of (alpha+beta)

If tanalpha=m/(m+1) and tanbeta=1/(2m+1) . Find the possible values of (alpha+beta)

If tanalpha=1/7 and tanbeta=1/3 , then cos 2alpha=