Home
Class 12
MATHS
If a,b,c are the sides of a triangle the...

If a,b,c are the sides of a triangle then `a/(b+c-1)+b/(c+a-b)+c/(a+b-c)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c are the sides of triangle then (a)/(c +a -b) + (b)/(a +b -c) + (c )/(b +c-a) can take vlaue (s)

If a,b,c are the sides of a triangle,then the minimum value of (a)/(b+c-a)+(b)/(c+a-b)+(c)/(a+b-c) is equal to (a)3(b)6(c)9(d)12

If a ,b ,c are the sides of a triangle, then the minimum value of a/(b+c-a)+b/(c+a-b)+c/(a+b-c) is equal to (a) 3 (b) 6 (c) 9 (d) 12

If a ,b ,c are the sides of a triangle, then the minimum value of a/(b+c-a)+b/(c+a-b)+c/(a+b-c) is equal to (a) 3 (b) 6 (c) 9 (d) 12

If a, b, c are the sides of the triangle ABC such that a^(4) +b^(4) +c^(4)=2c^(2) (a^(2)+b^(2)), then the angle opposite to the side c is-

If a , b , c are the sides of triangle , then the least value of (a)/(c+a-b)+(b)/(a+b-c)+(c )/(b+c-a) is

If a , b , c are the sides of triangle , then the least value of (a)/(c+a-b)+(b)/(a+b-c)+(c )/(b+c-a) is

If a , b , c are the sides of triangle , then the least value of (a)/(c+a-b)+(b)/(a+b-c)+(c )/(b+c-a) is

If a , b , c are the sides of triangle , then the least value of (a)/(c+a-b)+(b)/(a+b-c)+(c )/(b+c-a) is

If a,b and c are the side of a triangle,then the minimum value of (2a)/(b+c-a)+(2b)/(c+a-b)+(2c)/(a+b-c) is 3 (b) 9(c)6(d)1