Home
Class 12
MATHS
sin14*(1)/(x log x)^(m)),x>0...

sin14*(1)/(x log x)^(m)),x>0

Promotional Banner

Similar Questions

Explore conceptually related problems

Integrate the functions (1)/(x(log x)^(m)),x>0

1. int(1+x)/(x*sin(x+log x))dx

lim_(x rarr 0) (sin x + log (1-x))/(x^(2)) is :

int_(t_(0))^(pi)(x^(sin x)((cos x log x)+(sin x)/(x))dx is equal

If f(x)={{:(((5^(x)-1)^(3))/(sin((x)/(a))log(1+(x^(2))/(3)))",",x ne0),(9(log_(e)5)^(3)",",x=0):} is continuous at x=0 , then value of 'a' equals

Ax=0 the given function f(x)={x sin(log x^(2));x!=0 and 0;x=0 is

If lim_(x rarr0)(a^(sin x)-1)/(1+x-cos x)=lim_(x rarr1)(x-1)/(ln(x)) then a=

lim_(x rarr0)(sqrt(1+sin3x)-1)/(log(1+tan2x))

lim_(x rarr 0) (sin x + log (1-x))/x^(2) =

The value of int_(1)^(e^(37) ) ( sin ( pi log x) )/( x) dx is (pi= 3.14)