Home
Class 12
MATHS
Show that distance of the point vec c f...

Show that distance of the point ` vec c` from the line joining ` vec aa n d vec b` is `(| vec bxx vec c+ vec cxx vec a+ vec axx vec b)/(| vec b- vec a|)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that perpendicular distance of the point vec c from the line joining vec aa n d vec b is (| vec bxx vec c+ vec cxx vec a+ vec axx vec b)/(| vec b- vec a|)

Show that perpendicular distance of the point vec c from the line joining vec a and vec b is (| vec bxx vec c+ vec cxx vec a+ vec axx vec b|)/(| vec b- vec a|)

If vec adot vec b= vec adot vec c\ a n d\ vec axx vec b= vec axx vec c ,\ vec a!=0, then

If vec a+ vec b + vec c= 0 , show that vec axxvec b= vec bxx vec c= vec cxx vec a .

The length of the perpendicular form the origin to the plane passing through the point a and containing the line vec r= vec b+lambda vec c is a. ([ vec a vec b vec c])/(| vec axx vec b+ vec bxx vec c+ vec cxx vec a|) b. ([ vec a vec b vec c])/(| vec axx vec b+ vec bxx vec c|) c. ([ vec a vec b vec c])/(| vec bxx vec c+ vec cxx vec a|) d. ([ vec a vec b vec c])/(| vec cxx vec a+ vec axx vec b|)

The length of the perpendicular form the origin to the plane passing through the point a and containing the line vec r= vec b+lambda vec c is a. ([ vec a vec b vec c])/(| vec axx vec b+ vec bxx vec c+ vec cxx vec a|) b. ([ vec a vec b vec c])/(| vec axx vec b+ vec bxx vec c|) c. ([ vec a vec b vec c])/(| vec bxx vec c+ vec cxx vec a|) d. ([ vec a vec b vec c])/(| vec cxx vec a+ vec axx vec b|)

The length of the perpendicular form the origin to the plane passing through the point a and containing the line vec r= vec b+lambda vec c is a. ([ vec a vec b vec c])/(| vec axx vec b+ vec bxx vec c+ vec cxx vec a|) b. ([ vec a vec b vec c])/(| vec axx vec b+ vec bxx vec c|) c. ([ vec a vec b vec c])/(| vec bxx vec c+ vec cxx vec a|) d. ([ vec a vec b vec c])/(| vec cxx vec a+ vec axx vec b|)

The length of the perpendicular form the origin to the plane passing through the point a and containing the line vec r= vec b+lambda vec c is a. ([ vec a vec b vec c])/(| vec axx vec b+ vec bxx vec c+ vec cxx vec a|) b. ([ vec a vec b vec c])/(| vec axx vec b+ vec bxx vec c|) c. ([ vec a vec b vec c])/(| vec bxx vec c+ vec cxx vec a|) d. ([ vec a vec b vec c])/(| vec cxx vec a+ vec axx vec b|)

If vec a+2 vec b+3 vec c=0,t h e n vec axx vec b+ vec bxx vec c+ vec cxx vec a= 2( vec axx vec b) b. 6( vec bxx vec c) c. 3( vec cxx vec a) d. vec0

If vec a+ vec b+ vec c = vec 0 then prove that vec axx vec b= vec bxx vec c = vec cxxvec a .