Home
Class 9
MATHS
4^(2x-1)-16^(x-1)=384...

4^(2x-1)-16^(x-1)=384

Promotional Banner

Similar Questions

Explore conceptually related problems

16. "4^(x)-3^(x-(1)/(2))=3^(x+(1)/(2))-2^(2x-1).

(2^(x-1)*4^(x+1))/(8^(x-1))=16

Show that (16(32^(x))-2^(3x-2)*4^(x+1))/(15*2^(x-1)*16^(x))-(5*5^(x-1))/(sqrt(5^(2x))) is given

Solve the equation 16xx4^(x+2)-16xx2^(x+1)+1=0 .

Solve (2^(x)+2^(-x))/(2^(x)-2^(-x))=(16^(1/x)+16^(-1/x))/(16^(1/x)-16^(-1/x))

Simplify: (x-y)(x+y)x^(2)+y^(2))(x^(4)+y^(5))2x-1)(2x+1)(4x^(2)+1)(16x^(4)+1)(7m-8n)^(2)+(7m+8n)^(2)

Solve : (x-4)(x-7)(x-2)(x+1)=16

Solve: (x-4) (x-7) (x-2) (x+1)=16

lim_(xrarr 1) (x^(2^(32))-2^32x+4^16-1)/((x-1)^2) is equal to