Home
Class 12
MATHS
Show that |sin10o-cos10osin80ocos80o|=1...

Show that `|sin10o-cos10osin80ocos80o|=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that |sin100-cos100sin80o cos80o|=1

Show that |[sin10,-cos10],[sin80,cos80]|=1

Show that |(sin10^@ , - cos10^@),(sin80^@, cos80^@)| = 1

Write the value of |sin20o-cos20osin70ocos70o| .

Show that cos20^o cos40^o cos60^o cos80^o =1/16

Show that sin20^o sin40^o sin60^o sin80^o =3/16

Show that cos10^o cos30^o cos50^o cos70^o =3/16

Show that det[[sin10^(0),-cos10^(0)sin80^(@),cos80^(@)]]=1

The value of the determinant abs[[sin10,-cos10],[sin80,cos80]] is

Show that : cos 20^@.cos 40^@.cos 80^@=1/8 .