Home
Class 10
MATHS
[Prove the following 8cos^(3)10^(@)-8sin...

[Prove the following `8cos^(3)10^(@)-8sin^(3)20^(@)-6cos10^(@)+6sin20^(@)=2sqrt(3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following 4(cos^(3)10^(@)+sin^(3)20^(@))=3(cos10^(@)+sin20^(@))

Prove the following identity: 4(cos^(3)10^(0)+sin^(3)20^(@))=3(cos10^(0)+sin20^(@))

4( cos^(3) 10^(@) + sin^(3) 20^(@))=

Prove that, 4 (cos^(3) 10^(@) + sin^(3) 20 ^(@))=3 (cos 10^(@) + sin 20^(@))

8 cos^(3) 20^(@) -6 cos 20^(@) =

8 cos^(3) 10^(@) -6 cos 10^(@) =

i) Prove that: cos^(3)2A+3cos2A = 4(cos^(6)A-sin^(6)A) ii) Prove that: 4(cos^(3)10^(@) + sin^(3)20^(@)) = 3(cos10^(@)+sin20^(@))

sin20^(@)*cos40^(@)+cos20^(@)*sin40^(@)=(sqrt(3))/(2)

Prove that 4(cos ^(3) 10^(@) + sin ^(3) 20^(@)) = 3 ( cos 10^(@) + sin 20^(@)).