Home
Class 10
MATHS
3sqrt(5)n^(2)+25n-10sqrt(35)=0...

3sqrt(5)n^(2)+25n-10sqrt(35)=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve by factorization: 3sqrt(5)x^(2)+25x-10sqrt(5)=0

Solve by factorization: 3sqrt(5)x^2+25 x-10sqrt(5)=0

Let u_(n)=(1)/(sqrt((5)))[((1+sqrt(5))/(2))^(n)-((1-sqrt(5))/(2))^(n)] (0=0,1,2,3,……) , prove that u_(n+1)=u_(n)+u_(n-1)(n ge 1) .

Solve for x by fractorisation 3sqrt5x ^(2) + 25 x + 10 sqrt5=0

(3+sqrt(5))^(n)-3[((3+sqrt(5))^(n))/(3)]

A body of mass 5kg is suspended by the strings making angles 60^(@) and 30^(@) with the horizontal - (a) T_(1)= 25 N ( b) T_(2) = 25N (c ) T_(1) = 25 sqrt(3) N (d) T_(2) =25sqrt(3)

A body of mass 5 kg is suspended by the string making angles 60^(@) and 30^(@) with the horizontal (a) T_(1)=25N (b) T_(2)=25N (c) T_(1)=25sqrt(3)N (d) T_(2)=25sqrt(3)N

The abscissas of point Pa n dQ on the curve y=e^x+e^(-x) such that tangents at Pa n dQ make 60^0 with the x-axis are. 1n((sqrt(3)+sqrt(7))/7)a n d1n((sqrt(3)+sqrt(5))/2) 1n((sqrt(3)+sqrt(7))/2) (c) 1n((sqrt(7)-sqrt(3))/2) +-1n((sqrt(3)+sqrt(7))/2)

The abscissas of point Pa n dQ on the curve y=e^x+e^(-x) such that tangents at Pa n dQ make 60^0 with the x-axis are. 1n((sqrt(3)+sqrt(7))/7)a n d1n((sqrt(3)+sqrt(5))/2) 1n((sqrt(3)+sqrt(7))/2) (c) 1n((sqrt(7)-sqrt(3))/2) +-1n((sqrt(3)+sqrt(7))/2)

The abscissas of point Pa n dQ on the curve y=e^x+e^(-x) such that tangents at Pa n dQ make 60^0 with the x-axis are. (a)1n((sqrt(3)+sqrt(7))/7)a n d1n((sqrt(3)+sqrt(5))/2) (b)1n((sqrt(3)+sqrt(7))/2) (c)1n((sqrt(7)-sqrt(3))/2) (d)+-1n((sqrt(3)+sqrt(7))/2)