Home
Class 11
MATHS
" ILI "Iy=(sqrt(x)+(1)/(sqrt(x)))," show...

" ILI "Iy=(sqrt(x)+(1)/(sqrt(x)))," show that "2x*(dy)/(dx)+y=2sqrt(x)

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sqrt(x)+(1)/sqrt(x) , then show that 2x(dy)/(dx)+y=2sqrt(x) .

If y=sqrt(x)+(1)/sqrt(x) , then show that 2x(dy)/(dx)+y=2sqrt(x) .

If y = sqrt(x) + (1)/(sqrt(x)) prove that 2x(dy)/(dx) + y = 2sqrt(x)

If y=sqrt(x)+(1)/(x), Show that 2x(dy)/(dx)+y=2sqrt(x)

y=sqrt(x)+(1)/(sqrt(x)), prove that 2x(dy)/(dx)=sqrt(x)-(1)/(sqrt(x))

If y=sqrt(x)+1/(sqrt(x)) , prove that 2x(dy)/(dx)=sqrt(x)-1/(sqrt(x))

If y=sqrt(x)+(1)/(sqrt(x)), prove that 2x(dy)/(dx)=sqrt(x)-(1)/(sqrt(x))

If y=log(sqrt(x)+(1)/(sqrt(x))), prove that (dy)/(dx)=(x-1)/(2x(x+1))

If y= sqrt ( x) + (1)/( sqrtx ) , prove that 2x (dy)/( dx ) + y=2 sqrt (x ) .

If y=log(sqrt(x)+(1)/(sqrt(x))). Prove that (dy)/(dx)=(x-1)/(2x(x+1))