Home
Class 11
MATHS
" (i) "(n!)/(r!)=n(n-1)(n-2)dots(r+1)...

" (i) "(n!)/(r!)=n(n-1)(n-2)dots(r+1)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (n!)/(r!)=n(n-1)(n-2)dots(r+1)

Prove that : (i) (n!)/(r!)=n(n-1)(n-2)...(r+1) (ii) (n-r+1)*(n!)/((n-r+1)!)=(n!)/((n-r)!) (iii) (n!)/(r!(n-r)!)+(n!)/((r-1)!(n-r+1)!)=((n+1)!)/(r!(n-r+1)!)

Prove that: (i) (n!)/(r!) = n(n-1) (n-2)......(r+1) (ii) (n-r+1). (n!)/((n-r+1)!) = (n!)/((n-r)!)

Prove that: (i) (n!)/(r!) = n(n-1) (n-2)......(r+1) (ii) (n-r+1). (n!)/((n-r+1)!) = (n!)/((n-r)!)

(n!) / ((nr)!) = n (n-1) (n-2) dots (n- (r-1))

Prove that: (i) r.^(n)C_(r) =(n-r+1).^(n)C_(r-1) (ii) n.^(n-1)C_(r-1) = (n-r+1) .^(n)C_(r-1) (iii) .^(n)C_(r)+ 2.^(n)C_(r-1) +^(n)C_(r-2) =^(n+2)C_(r) (iv) .^(4n)C_(2n): .^(2n)C_(n) = (1.3.5...(4n-1))/({1.3.5..(2n-1)}^(2))

(ii) (n!)/((n-r)!r!)+(n!)/((n-r+1)!(r-1)!)=((n+1)!)/(r!(n-r+1)!)

Prove that (n!)/(r!(n-r)!)+(n!)/((r-1)!(n-r+1)!) =((n+1)!)/(r!(n-r+1)!)

Prove that (n!)/(r!(n-r)!)+(n!)/((r-1)!(n-r+1)!)= ((n+1)!)/ (r!(n-r+1)!) .

Prove that (n!)/(r!(n-r)!)+(n!)/((r-1)!(n-r+1)!) =((n+1)!)/(r!(n-r+1)!)