Similar Questions
Explore conceptually related problems
Recommended Questions
- " (i) "(n!)/(r!)=n(n-1)(n-2)dots(r+1)
Text Solution
|
- Prove that (n!)/(r!)=n(n-1)(n-2)dots(r+1)
Text Solution
|
- Prove that ((n-1)!)/((n-r-1)!)+r.((n-1)!)/((n-r)!)=(n!)/((n-r)!)
Text Solution
|
- If sum(r=1)^(n)I(r)=2^(n)-1 then sum(r=1)^(n)(1)/(I(r)) is
Text Solution
|
- (n!) / ((nr)!) = n (n-1) (n-2) dots (n- (r-1))
Text Solution
|
- Prove that: (i) (n!)/(r!) = n(n-1) (n-2)......(r+1) (ii) (n-r+1). ...
Text Solution
|
- Prove that : (i) (n!)/(r!)=n(n-1)(n-2)...(r+1) (ii) (n-r+1)*(n!)...
Text Solution
|
- सिद्ध कीजिए : ((n-1)!)/((n-r-1)!)+r.((n-1)!)/((n-r)!)=(n!)/((n-r)!) ...
Text Solution
|
- सिद्ध कीजिए कि - (i) (n!)/((n-r)!) =n(n-1)(n+2) "…."{n-(r-1)} (ii)...
Text Solution
|