Home
Class 10
MATHS
" (iv) "i^(37)+(1)/(i^(67))...

" (iv) "i^(37)+(1)/(i^(67))

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following : (i) i^(7) (ii) i^(51) (iii) (1)/(i) (iv) i^(-71) (v) (i^(37)+(1)/(i^(67)))

Evaaluate : (i ^(37) + (1)/( i ^( 67)))

Value of i^(37) +(1)/(i^(67))

Express each of the following complex number in the form a+ib: i^(37)xx(1)/(i^(67))

Evaluate : (i^(37)+(1)/(i^(67)))

Evaluate : (i) i^(23)" "(ii) i^(998)" "(iii)i^(-998)" "(iv) i^(-71) (v) (sqrt(-1))^(91)" "(vi) (i^(37)xx i^(-61))" "(vii) i^(-1)

(i^(95)+i^(67)) =

Prove that: (i) 1+i^(2)+i^(4)+i^(6)=0 (ii) 1+i^(10)+i^(100)+i^(1000)=2 (iii) i^(104)+i^(109)+i^(114)+i^(119)=0 (iv) 6i^(54)+5i^(37)-2i^(11)+6i^(68)=7i (v) (i^(592)+i^(590)+i^(588)+i^(586)+i^(584))/(i^(582)+i^(580)+i^(578)+i^(576)+i^(574))=-1

Let i^(2)=-1 , then (i^(10)-1/(i^(11)))+(i^(11)-1/(i^(12)))+(i^(12)-1/(i^(13)))+(i^(13)-1/(i^(14)))+(i^(14)+1/(i^(15))) is equal to a) -1+i b) -1-i c) 1+i d) -i

The tangent of the angle between the lines joining the points (-1,2),(3,-5) and (-2,3),(5,0) is (i) (37)/(49) (ii) (49)/(37) (iii) (23)/(47) (iv) (47)/(23)